Amazon Redshift では SQL を使用して、データウェアハウス、運用データベース、データレイク全体で、エクサバイトの構造化データと半構造化データをクエリし、組み合わせることができます。AQUA (Advanced Query Accelerator) の一般提供が開始されたので、追加コストやコードの変更なしで、クエリのパフォーマンスを最大で 10 倍向上させることができます。実際、Amazon Redshift は、他のクラウドデータウェアハウスよりも最大で 3 倍優れたコストパフォーマンスを提供します。 しかし、さらに一歩進んで、このデータを処理して機械学習 (ML) モデルをトレーニングし、ウェアハウス内のデータからのインサイト生成にこれらのモデルを使用したい場合は、どうしたらよいでしょうか。 たとえば、収益の予測、顧客のチャーン予測、異常の検出などのユースケースを実装するには? 以前なら、トレーニングデータを Amazon Redshift から Amazon Simple Storage Service (Amazon S3) バケットにエクスポートし、機械学習トレーニングプロセス...

Amazon Web Services / 15日

この記事へのコメントはありません

appstore
googleplay
会員登録

会員登録して、もっと便利に利用しよう

  • 1.

    記事をストックできる
    気になる記事をピックして、いつでも読み返すことができます。
  • 2.

    新着ニュースをカスタマイズできます
    好きなニュースフィードをフォローすると、新着ニュースが受け取れます。